
Code.org Computer Science Principles Syllabus and Overview

AP® Computer Science Principles
Code.org’s Computer Science Principles (CSP) curriculum is a full-year, rigorous, entry-level course that introduces
high school students to the foundations of modern computing. The course covers a broad range of foundational
topics such as programming, algorithms, the Internet, big data, digital privacy and security, and the societal impacts of
computing. All teacher and student materials are provided for free online and can be accessed at code.org/csp.

AP Endorsed
Code.org is recognized by the College Board as an endorsed provider of curriculum and professional
development for AP® Computer Science Principles (AP CSP). This endorsement affirms that all
components of Code.org CSP’s offerings are aligned to the AP Curriculum Framework standards, the
AP CSP assessment, and the AP framework for professional development. Using an endorsed provider
affords schools access to resources including an AP CSP syllabus pre-approved by the College Board’s AP
Course Audit, and officially-recognized professional development that prepares teachers to teach AP CSP.

AP is a trademark registered and owned by the College Board.

AP At-a-Glance
The curriculum is divided into roughly 120 daily lesson plans which comprise 10 units of study. More detailed information
about each unit can be found later in this syllabus.

Unit 1
Digital Information

Explore how computers store complex information like numbers, text, images
and sound and debate the impacts of digitizing information.

Unit 2
The Internet

Learn about how the Internet works and discuss its impacts on politics, culture,
and the economy.

Unit 3
Intro to App Design

Design your frst app while learning both fundamental programming concepts
and collaborative software development processes.

Unit 4
Variables, Conditionals, and Functions

Expand the types of apps you can create by adding the ability to store
information, make decisions, and better organize code.

Build apps that use large amounts of information and pull in data from the web
to create a wider variety of apps.

Unit 5
Lists, Loops, and Traversals

Unit 6
Algorithms

Design and analyze algorithms to understand how they work and why some are
considered better than others.

Unit 7
Parameters, Return, and Libraries

Learn how to design clean and reusable code that you can share with a single
classmate or the entire world.

Unit 8
Create PT Prep Practice and complete the Create Performance Task (PT).

Unit 9
Data

Explore and visualize datasets from a wide variety of topics as you hunt for
patterns and try to learn more about the world around you.

Unit 10
Cybersecurity and Global Impacts

Research and debate current events at the intersection of data, public policy,
law, ethics, and societal impact.

1

http://code.org/csp
https://Code.org
https://Code.org

Code.org Computer Science Principles Syllabus and Overview

Our Vision
Code.org’s vision is that every student in every school should have the opportunity to learn computer science
(code.org/about). Our curriculum is designed so that an empowered teacher can lead a diverse group of students through
experiences that are supportive, equitable, engaging, and lead to valuable learning (code.org/educate/curriculum/values).

Historically this vision has contrasted sharply with reality. Until recently, most schools did not offer computer science at all,
and what classes there were notoriously lacked in diversity. Additionally, many students found these classes unengaging,
intimidating, or simply disconnected from their lived experiences with technology. Thanks to efforts by many organizations
and individuals, this world is beginning to change: many more schools now offer computer science courses; more diverse
students take those courses; and more engaging, relevant, and equitable pedagogy has become the established norm.
Even so, there is much work still to be done. This course is designed to continue this momentum as the collective CS
education community moves towards this vision of an equitable CS education system.

How We Support Our Vision
Many aspects of Code.org’s CS Principles curriculum are designed to bring about the eventual change we aim to see
more broadly in CS education. Some of the most significant features are listed below.

Free and open: We make our curriculum, videos, and tools free and open for anyone to adopt.

Prioritize New-to-CS Teachers: Historically only a few schools could hire trained computer scientists as teachers, which
severely limited which schools could offer a CS course. Reaching all schools has meant developing our CS Principles
course with the understanding that most of our teachers are new-to-CS and prioritizing their needs. As such, our course
includes some distinctive features.

• Comprehensive lesson plans and resources designed to ensure new-to-CS teachers have everything they need
to implement the course

• Clear and consistent pedagogy to help new-to-CS teachers develop best practices as CS teachers
• High-quality videos that help teachers introduce and explain CS concepts
• An associated professional learning program that pays particular attention to the needs of new-to-CS teachers

Equitable Pedagogy: Our curriculum is designed to promote an equitable classroom environment for all students, with
particular attention paid to the experiences of historically excluded groups, most notably young women and students
from underrepresented minorities in computing. Drawing from extensive feedback from our classrooms, as well as CS
education research, our course includes many features designed to support and prioritize these students:

• Pedagogy that develops a collaborative and supportive classroom environment
• Specific attention paid to language demands of our lessons
• Projects and activities that highlight a variety of applications of computing and frequently ask students to

incorporate their own backgrounds and interests.
• A sequencing of topics that intentionally delays the introduction of programming (the CS topic with which

privileged groups are most likely to have prior experience)
• Curriculum videos that feature a cast of diverse role models in terms of race, gender, and profession who

empower our diverse students to “see themselves” as part of the world of computing
• A professional learning program that highlights these features and helps teachers reflect on how best to

implement them within their own classroom

Join Us in this Vision
We think our vision is audacious and deeply motivating. If you feel the same, the best way to join us in this vision is to
teach this course! We know that for many teachers this represents a significant undertaking, and we have aimed to do
our best to help share the load. Based on the feedback of many teachers we know it will be a challenging, but ultimately
gratifying experience. Code.org is here to support you, and we look forward to your feedback so that we can continue to
make CS Principles an even better experience for our students and teachers.

2

http://code.org/about
http://code.org/educate/curriculum/values
https://Code.org

Code.org Computer Science Principles Syllabus and Overview

Provided Materials
The curriculum provides a comprehensive set of resources for the teacher, including detailed minute-by-minute lesson
plans for every day of instruction, engaging activities and projects, formative and summative assessments, computing
tools that are designed for learning specific concepts, and the programming environment, App Lab. These resources have
been specifically curated for each step of each lesson and help provide a unified experience. Together, these resources
typically allow the teacher to act in the role of facilitator and coach when addressing unfamiliar material. In instances when
the teacher acts as the primary source of information, generous supports are provided.

All resources below can be accessed free of charge at code.org/csp.

Lesson Plans
• Instructional guides for every lesson
• Activity Guides and handouts for students
• Unit presentation slides
• Formative and summative assessments
• Exemplars, rubrics, and teacher dashboard

Videos
• Tutorials, instructional videos, and inspirational videos

Tools
• Widgets - designed for exploring individual computing concepts
• Internet Simulator - Code.org’s tool for investigating the various “layers” of the internet
• App Lab - Code.org’s JavaScript programming environment for making apps

Technical Requirements
The course requires and assumes a 1:1 computer lab or setup such that each student in the class has access to an
Internet-connected computer every day in class. All of the course tools and resources (lesson plans, teacher dashboard,
videos, student tools, programming environment, etc.) are available online. Tablets are not currently supported. For more
details on the technical requirements, please visit: code.org/educate/it

While the course features many “unplugged” activities designed to be completed away from the computer, daily access to
a computer is essential for every student. The course is developed to be completed within the classroom - no homework
or after-hours computer access is assumed.

Required Materials and Supplies
Lessons make use of common classroom materials such as:

• Student journals or notebooks
• Poster paper
• Markers
• Post-it notes
• Plastic baggies

Suggested substitutions can be found in individual lesson plans. There is a complete materials list in the curriculum front
matter available at code.org/csp. Optional materials are highly suggested, and low cost (cups, string, playing cards, etc.).

3

http://code.org/csp
http://code.org/educate/it
http://code.org/csp

Code.org Computer Science Principles Syllabus and Overview

Covering the AP CSP Conceptual Framework
The CS Principles Conceptual Framework developed by the College Board outlines five “Big Ideas” of computing
which are further subdivided into Enduring Understanding, Learning Objectives, and Essential Knowledge Statements.
The framework further identifies six “Computational Thinking Practices,” containing skills that students should employ
and develop. The curriculum is designed such that students investigate each of these big ideas while practicing the
computational thinking practices.

Big Ideas Conceptual Thinking Practices

CRD: Creative Development CTP1: Computational Solution Design
DAT: Data CTP2: Algorithms and Program Development
AAP: Algorithms and Programming CTP3: Abstraction in Program Development
CSN: Computing Systems and Networks CTP4: Code Analysis
IOC: Impact of Computing CTP5: Computing Innovations

CTP6: Responsible Computing

Below, you will find detailed descriptions of each unit, that highlight the big ideas and computational thinking practices that
are developed in that unit.

Unit 1 - Digital Information
Students explore how computers store complex information like numbers, text, images, and sound, and they debate the
impacts of digitizing information (DAT). Alternating between lessons away from the computer (“unplugged”), and lessons
that use digital tools called “widgets,” this unit encourages an exploratory and collaborative approach to learning about
digital information. For example, in one activity students design a device using household items like pipe-cleaners, cups,
string, etc. that will allow them to communicate simple messages across a room. As students are challenged to send
increasingly complex messages, they must improve their device collaboratively with their partner while confronting some
of the challenges underlying the representation of digital information (CTP1). To close out the unit, students debate the
pros and cons of digitizing information and the impacts of digital information on society and culture at large (CTP5) (IOC).

Unit 2 - The Internet
Students learn how the Internet works and discuss its impacts on politics, culture, and the economy (CSN). Throughout
this unit, students use a digital tool called the Internet Simulator that simulates how different parts of the Internet work and
forces students to grapple with and solve the problems each aspect of the Internet was designed to solve (CTP1). At the
conclusion of the unit, students investigate an “Internet Dilemma,” both from the standpoint of its technical background
and its impacts on different groups of people (CTP5) (IOC).

Unit 3 - Intro to App Design
Students design their first app while learning both fundamental programming concepts and collaborative software
development processes (CRD, AAP). Students work with partners to develop this simple app that teaches classmates
about a topic of personal interest (CTP1, CTP4, CTP6). Throughout the unit they learn how to use App Lab to design
user interfaces and write simple event-driven programs. Along the way, students learn practices like debugging, pair
programming, and collecting and responding to feedback, which they will be able to use throughout the course as they
build ever more complex projects. The unit concludes with students sharing the apps they develop with their classmates.

Unit 4 - Variables, Conditionals, and Functions
Students expand the types of apps they can create by adding the ability to store information (variables), make decisions
(conditionals), and better organize code (functions) (AAP). Students are introduced to these concepts through guided
hands-on activities that feature approachable manipulatives like sticky notes and plastic bags. They are then provided
opportunities to explore working examples of programs that use each concept (CTP4) before setting out on a series
of increasingly challenging practice activities. The exploration of each of these three concepts concludes with a lesson
in which students must write the code for a simple app that uses each concept without starter code. The entire unit
concludes with an open-ended project in which students must build an app that helps their classmates make a decision
based on user input (CTP1, CTP3, CTP4, CTP6). 4

Code.org Computer Science Principles Syllabus and Overview

Unit 5 - Lists, Loops, and Traversals
Students learn to build apps that use and process lists of information (AAP). Like the previous unit, students explore the
core concepts of lists, loops, and traversals through a variety of lesson types ranging from hands-on unplugged activities,
to reading and modifying working code, to collaboratively working through programming challenges (CTP4). Late in the
unit, students are introduced to tools that allow them to import tables of real-world data to help further power the types of
apps they can make. At the conclusion of the unit, students complete a week-long project in which they must design an
app around a goal of their choosing that uses one of these data sets (CTP1, CTP4, CTP6).

Unit 6 - Algorithms
Students learn to design and analyze algorithms to understand how they work and why some algorithms are considered
more efficient than others (AAP). This short unit is entirely unplugged, and features hands-on activities that help students
get an intuitive sense of the differences between how quickly different algorithms run and the pros and cons of different
algorithms (CTP2). Later in the unit, students explore concepts like undecidable problems and parallel and distributed
computing (CSN).

Unit 7 - Parameters, Return, and Libraries
Students learn how to design clean and reusable code that can be shared with a single classmate or the entire world
(AAP). In the beginning of the unit, students are introduced to the concepts of parameters and return, which allow for
students to design code that encapsulates algorithms (CTP3). In the second half of the unit, students learn how to design
libraries of functions that can be used in a variety of situations. The unit concludes with students designing a small library
of functions that can be used by a classmate (CTP1, CTP2, CTP3, CTP4).

Unit 8 - Create PT Prep
Students practice and complete the Create Performance Task (PT). The unit begins with a series of activities that ensure
students understand the requirements of the Create PT, which they have practiced throughout the year. Subsequently,
students are given at least 12 class hours in which to complete the Create PT.

Unit 9 - Data
Students explore and visualize datasets from a wide variety of topics as they hunt for patterns and try to learn more about
the world around them (DAT). Students once again work with datasets in App Lab, but are now asked to make use of a
data visualizer tool that assists students in finding data patterns. Students learn how different types of visualizations can
be used to better understand the patterns contained in data sets and investigate hypotheses. At the conclusion of the unit,
students learn about the impacts of data analysis on the world around them, before completing a final project in which
they must uncover and present a data investigation they’ve completed independently (CTP5).

Unit 10 - Cybersecurity and Global Impacts
Students research and debate current events at the intersection of data, public policy, law, ethics, and societal impact
(IOC). This unit is built around a simulated “future school” conference in which students must take on the persona of a
stakeholder in a school setting and propose and debate technological innovations that could improve schools. Throughout
the unit students learn about the privacy and security risks of many computing innovations, and learn about the ways
some of these risks can be mitigated. Students complete their Explore Curricular Requirement as part of this project
as they investigate at least three computing innovations, then discuss and debate many other innovations with their
classmates (CTP5, CTP6). At the conclusion of the unit, the class holds a conference in which teams present their overall
vision for a school of the future and the computing innovations that would power it.

5

Code.org Computer Science Principles Syllabus and Overview

Explore Curricular Requirement
If teaching this course as an AP course, the College Board requires that students explore Computing Innovations (CI) a
minimum of three times, and address the following prompts at least once:

A. Explain beneficial and harmful effects of at least one computing innovation on society, economy, or culture.
B. Identify the data used in at least one computing innovation and explain how the data is consumed, produced, or

transformed by the given computing innovation.
C. Identify data privacy, security, or storage concerns for at least one computing innovation.

Students complete the Explore Curricular Requirements
in Unit 10: Cybersecurity and Global Impacts, during the
Innovation Simulation project where they act as delegates
proposing innovations to improve a “future school.”

• Students research and discuss three different
computing innovations and consider the data that
is being collected along with the function and
purpose of the innovations (CI 1, Prompt B).

• Students choose one computing innovation to
develop into a one-page proposal. Included in this
proposal are the purpose and benefits of the computing innovation, its function, the data collected, and potential
concerns along with how those concerns could be addressed (CI 2, Prompts A, B, and C).

• Students work with their groups to create a presentation about their computing innovations with the goal of
convincing others that their innovations together are the best to address the concerns of the “future school.”
Students discuss their innovations with their group to create a unifying theme for their presentation. Before the
presentations are delivered, groups meet together to learn about each other’s innovations and give feedback on
presentations. At this point in the project, students will have explored and discussed all the innovations in their
own group along with the top innovations from another group (CI 3, Prompts A, B, and C).

6

